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Abstract

Peer-to-Peer (P2P) networks have proven to be an
efficient and successful mechanism for file sharing over
the Internet. However, current P2P protocols have long
worst case query latencies which prevents them from be-
ing employed for real time applications. Popularity of
objects in these networks can change rapidly and augurs
the need for a rapid and lightweight content replication
strategy to reduce search and data-access latencies.

In this paper, we propose an On-line Pointer1 Repli-
cation (OPR) algorithm in structured P2P networks
which yields a significantly low worst case query la-
tency. Also, the degree of replication achieved by OPR
is dynamically adaptable to the instantaneous query ar-
rival rate and churn characteristics of the system in or-
der to reduce total control traffic. We evaluate and com-
pare different replica placement strategies on the Plan-
etLab network as well as with simulations. Experimental
results show that OPR outperforms the existing replica
placement algorithms by at least 30% in average latency
and around 40% in terms of maximum query latency.

1 Introduction

The recent emergence of Internet-scale distributed
systems including storage administration in global com-
panies, entertainment file sharing, and large distributed
database systems has led to extensive research on effi-
cient and scalable distributed file sharing architectures.
P2P systems, among many other distributed computing
models, exhibit good scalability and stability. They have
proved to be an efficient mechanism for decentralized
file sharing over the Internet. The structured overlay
networks are designed to enable scalable P2P file shar-
ing without any centralized control. They enable the file
sharing scheme to scale automatically with increasing
number of peers. They are robust and self-organizing
since they are able to adapt to arrival and departure of
nodes with relatively low cost. Due to their potential
efficiency, robustness and scalability, the structured P2P
networks have been employed to support a variety of ap-

1Pointer is defined as the location-information of an object.

plications such as persistent storage [19], query process-
ing [17], domain name services [30], and communica-
tion services [36]. A variety of other applications have
also demonstrated the significance of structured P2P in
large scale distributed systems [8, 28].

Recent research has uncovered that query messages
contribute nearly118TB/month of Gnutella traffic [26].
This massive amount of control messages perform only
one function: to locate resources. This initiates an inter-
esting research in P2P networks: locating data sources
efficiently across a large number of participating peers
to reduce the overall query traffic [22]. This need has
forced P2P networks to evolve from Napster [4] based
models, wherein a centralized server tracks the pointers
of all the data in the network to more decentralized mod-
els as GNUtella [3] and BitTorrent [1]. The dynamic
nature of peer lifetimes amounts to frequent changes in
pointers for data in these networks. This is a natural mo-
tivation to devise mechanisms which can satisfy search
queries efficiently while incurring low overheads.

An obvious solution is to partition and distribute the
pointers among several peers in the network. This mech-
anism has been deployed in both unstructured [1] and
structured P2P networks [29]. In [1], trackers are used
to keep a list of potential nodes where the desired data is
likely to be found. While in [29], a consistent hash func-
tion is used to map the data to its server (root)2 which
stores a pointer to the data. This scheme enables the
file sharing scheme to scale automatically with increas-
ing number of peers. However, the search latency may
not satisfy client-perceived bounds for large-scale net-
works [25]. Further, long worst-case latencies prevent
these P2P techniques from being employed by latency
sensitive applications such as DNS and VOD (video on
demand). Another drawback of these schemes is that
they suffer from a single point of failure.

Replication algorithms are an attractive option to
solve the above problem by placing multiple copies of
pointers in the network. For each object, the roots which
maintain the pointers are known to all other peers in the
network. When a query arrives at any peer in the net-
work, the query is forwarded to the nearest root to ob-

2The root of an object is the peer which keeps the location infor-
mation of that object.



tain the pointer. Recently, a number of replication strate-
gies [12, 21] have been proposed to replicate the objects
in the P2P network to reduce the object access time.
Our replication framework is different from these ap-
proaches since we replicate pointers instead of objects.
Objects are usually of much larger size than pointers
and incur larger overhead in terms of memory space and
replication bandwidth. In current file-sharing P2P sys-
tems where both memory space and bandwidth are pre-
cious resources, pointer replication is found to be more
promising. Some of the questions we intend to answer
follow below:

• How much benefit does pointer replication provide
over object replication?

• When should a new replica be spawned?

We must mention that we are aware that pointer repli-
cation may incurs an update cost when thehome node,
which hosts the actual object data, joins or leaves the
network. Also, in order to maintain the freshness of
pointer information, messages are transmitted to roots
for updating pointer information. Naturally, with mul-
tiple roots the cost to update pointer information is in-
creased. In this paper, we propose an On-line Pointer
Replication (OPR) algorithm for structured peer-to-peer
networks which can efficiently reduce the query search
latency while incurring low update overhead.

Briefly, our pointer replication framework displays
the following salient features.

• Low Latency: The OPR achieves near minimum
worst-case query search latency given the number
of replications. We prove that OPR can choose
the best locations of the replications in polynomial
time while guarantying the object search latency
within a factor of 2 of the optimal solution.

• Low Overhead: OPR generates minimal control
traffic3 to update all the replicas and to locate data
objects.

• High Scalability: OPR protocol works without
any centralized oracle and does not need complete
knowledge of the whole network.

The paper is organized as follows. In Section 2, we
survey related work followed by section 3 describing the
background and problem formulation. Section 4 intro-
duces our replication placement strategy, OPR followed
by section 5. Section 6 and 7 evaluate OPR and com-
pare it with various replication algorithms via real-world
implementation and simulation. Finally, section 8 con-
cludes the paper.

3Here, the control traffic consists of query messages and update
messages.

2 Related Work

In this section, we survey related work on replica-
tion algorithms in P2P networks. We find two classes of
replication mechanisms, namelyreactiveandproactive
replications.

In reactive replications, as objects are transferred
from the home node to the requesting peer, intermedi-
ate nodes through whom the data flows, determine in-
dependently whether or not to cache the object-content.
P2P web caching is an example of such a mechanism
[9, 33]. In the context of reactive pointer replication,
some mechanisms proposed to cache pointers in order
to yield better query search performance [31, 20]. In Di-
CAS [31], queries are forwarded to peers in a predefined
group which passively cache the pointers in unstructured
P2P network. However, it would incur a large overhead
to update the pointers when the object is moved. When
an object is moved or deleted, the updated location infor-
mation has to be flooded to the whole overlay network.
One intuitive approach to decrease the object search la-
tency is to cache pointers on intermediate nodes from
the home node to the root. When a query encounters
an intermediate node on its way to the root the search
latency is cut down since the average route length is
reduced. This mechanism is proposed in Plaxton’s pa-
per [20], where all the intermediate nodes between the
home node and root node contain copies of the pointers,
as shown in Fig. 1. Anyhow, our proactive replication
algorithm can also be supplemented with intermediate
pointers, as described above, to further boost the perfor-
mance.

In proactive replication, contents are pushed to se-
lective peers by the home node in pursuit of better per-
formance in terms of query latency, loss-rate, and load
balance etc. There are several works in the object repli-
cation in P2P networks [10, 15, 11, 12, 21]. However,
the cost of replicating entire objects can be cumbersome
in both disk space and bandwidth, particularly for sys-
tems that support applications with large objects(e.g.,
audio, video, software distribution). In [12], the au-
thor explores the optimal replication strategy according
to the object popularity in unstructured P2P networks.
However, it is not suitable to the pointer replication as it
does not take the update cost into account. In Beehive
[21], replication strategies are designed to achieve a con-
stant lookup performance in average under the assump-
tion that the object popularity follows a power law distri-
bution. Nevertheless, it is not an effective way to reduce
the worst-case search latency for all objects. Further, the
replication placement algorithm in [21] needs a couple
of hours to adapt to the object popularity changes.
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Figure 1. Illustration of Intermediate Pointer

3 Problem Formulation

We consider a set ofN nodes in a large distributed
network each stores various objects like video files, web
pages or documents. Queries requesting a specific ob-
ject may originate from a node at any time. Once the
object location is known to the querying node, the query
is considered successful. In order to facilitate the search
for a specific object, a location-pointer of the object is
kept at a peer (root) in the network. Here we use root
node to denote the peer who stores the pointer to the ob-
ject. Thus, all queries for that object are forwarded to the
root node to fetch the location pointer. Latency incurred
by a query is denoted by the number of hops it takes to
route to the root. This has been clearly demonstrated in
Fig. 1.

To reduce the query search latency as well as improve
data availability, we propose to replicate the pointers in
the networks. In doing so, we identify the tradeoffs be-
tween performance gains and the cost paid for replica
maintenance. Due to the limited resources available,
our replication protocol has to address the following two
problems.

• Placement of Replicas: Given a number of repli-
cas, how to place the replication pointers in the net-
work to achieve the best performance? We eval-
uate performance with two metrics, the first be-
ing search query latency and the other is resource-
overhead.

• Extent of Replication: In a given network envi-
ronment, how to determine the replication degree
for each object to achieve the best performance?
We use network environment to depict the network
condition in terms of bandwidth and latency as well
as the dynamic nature of the nodes.

Formal definition : Given the replication numberk
and the default root noder1 of the object, we need to find
the bestk − 1 replica nodes, denoted asR = r2, ...rk,
such that the worst case latency is minimized. With the
knowledge of all the replica nodesR, each query is able
to route to the nearestri (i ∈ [1, k]) to fetch the pointer.
Effectively, the network is actually a forest ofk trees
with each tree rooted at one replica noderi. Thus all
thek roots cooperatively serve the queries for the object
and the workload is distributed among them. Our goal is
to identify the best replica placementR to minimize the
maximum latency among all the queries.

Thus, given a graphG = (V, E) representing an
overlay network topology, given an integerk and given
any noder1 ∈ V , the goal is to compute a subset of
k − 1 verticesR ⊆ V , such that the maximum distance
between any vertexv ∈ V and its nearest centerri ∈ R
is minimized. The objective is to minimize equation 1.

max{min{d(ri, v) ∀ri ∈ R} ∀v ∈ V } (1)

The more replicas we instantiate, the lower the search
latency. However, with increasing number of replicas,
the system consumes more memory resources and in-
creases communication cost for pointer updates. Given
a network environment, the replication degree is a tun-
able parameter which can balance the performance gain
and the resource overhead introduced by the replication.

The overhead involved in replication can be classified
in two partsCostmem andCostmaintenance. Costmem

is the memory space overhead andCostmaintenance is
the communication overhead. Compared with the small
memory requirement for a pointer, the communication
overhead to keep the pointer up-to-date is more signif-
icant. Further, the communication overhead incurred
by the replication consists of two partsCostpublish and
Costupdate. Costpublish is the cost to publish the point-
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Greedy Approach
Input Parameters:

(1) Underline Topology:G = (V, E)
(2) Number of Duplications: k
(3) The Original Root:r1

Output Parameters:
(1) A set of k Roots:R

begin

(1) For eachv in V ;
d[v] = INFINITY;
R = {r1};

(2) For i = 2 to k;
If d[u] is maximum;

ri = u;
R = ri

S

R;
For eachv in V ;

d[v] = minimumD(ri, v), ri ∈ R

D(ri, v) is the distance fromri to v

(3) returnR

end

Figure 2. Greedy Approach of Selectingk Roots

ers andCostupdate represents the cost to update the
pointers. Publish denotes the process when a peer joins
the network or a new object is made available for shar-
ing by the home node which contacts the root node to
register object-pointers. In this framework, we propose
a replication strategy that minimizes the communication
cost.

Costmaintenance = Costpublish + Costupdate (2)

4 OPR: On-line Pointer Replication Place-
ment

In this section, we describe the OPR framework
which can effectively place the replication pointers. We
start with a topology aware approach assuming complete
knowledge about the network layout and prove the effec-
tiveness of the algorithm. Subsequently, we apply OPR
to a structured P2P topology without the global knowl-
edge of the network and prove its efficacy.

4.1 Topology Aware Approach

In this subsection, we describe the heuristic approach
of the algorithm to find the best replica placement, ana-
lyze the time complexity of the algorithm and prove that
this approach produces results within a factor of two of
the optimal solution.

Intuitively, thek roots should be selected as far apart
from each other as possible. With this in mind, starting

from the original rootr1, we use a greedy approach to
select thek − 1 replica nodes one by one.
Greedy approach: we compute the shortest distances
between the original rootr1 and all the other vertices in
graphG. Then, we consider the vertex farthest from the
first rootr1, designate it as the next rootr2 and compute
the shortest distances from each vertex in the graph to
the nearest vertex in{r1, r2}. Now, we consider the ver-
tex with the maximum shortest-distance to be the next
root r3 and recursively proceed until allk roots have
been selected. In each iteration of our greedy approach,
there may be several nodes in the network having the
same maximum distance to the closest root inR. We
solve this tie by randomly selecting one of them. Fig. 2
shows the pseudo code for the greedy algorithm.

Given the network topology, the complexity of our
root selection algorithm isO(k(N + E)logN), where
E denotes the number of edges in the overlay network.
It is easy to see that each step of the algorithm includes
a multiple-source shortest-path problem, which can be
solved by the Dijkstra’s algorithm [13]. The run time of
Dijkstra’s algorithm isO((N +E)logN) and our greedy
approach isk times the run time of Dijkstra’s algorithm.
When theN2 node to node distance is given, the time
complexity of our root selection algorithm is onlyO(k).

From the analysis, we deduce that the greedy algo-
rithm executes fairly fast. Also, for any heuristic ap-
proach, it is important to know how well it can approx-
imate the optimal solution. Letdopt denote the opti-
mal solution anddg denote the maximum latency get-
ting from our greedy approach, we can prove the bounds
for our approach using methods outlined in [14]. The
greedy approach is a2-approximation algorithm of the
NP-hard problem, that isdg/dopt ≤ 2.

4.2 Decentralized Approach

A natural concern with a topology aware approach is
that the global knowledge of the network layout may not
be available in a large-scale P2P network. Also, it may
incur large overheads to keep the topology information
updated on each individual node in a dynamic environ-
ment. The large amount of control traffic generated to
propagate topology changes may impact the scalability
of the systems. However, in a structured P2P network,
we can address this problem easily since the layout of a
structured P2P network can provide the information to
find the best placement of the root nodes. In a struc-
tured P2P network, the overlay topology of the network
is constructed based on some interconnection topologies
such as hypercube [20, 27, 35], generalizedk-ary-d-cube
[23], and Moore graph [16] and etc. Without loss of gen-
erality, we investigate the widely used hypercube topol-
ogy in this paper.
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Figure 3. Illustration of On-line Pointer Replication

Hypercube overlay has been widely used in the area
of distributed and parallel computing as it features
a small inter-node distance(diameter) and good fault-
tolerance characteristics due to a large number of alter-
nate paths existing between pairs of nodes. These are
desirable properties in a P2P scenario. In a static net-
work, where the network size isN = 2n, a hypercube
can be easily embedded by connecting any two nodes
that are one hamming distance apart. Here, hamming
distance of two nodes is the number of bits that are dif-
ferent in IDs of two nodes. For example, ID0000 and
1110 differs in all positions except the last bit, so their
hamming distance is3. In this topology, each node in
the hypercube is connected tolog2N neighbors, where
N is the total number of nodes. With such a setup, it is
easy to compute the difference between two nodes given
their node IDs.

Peers in the P2P networks are known to be unstable.
They may join and leave the network arbitrarily. Thus,
the network sizeN is not necessary to be2n in most P2P
networks. We assume that network size does not expand
and shrink frequently, which is a reasonable assumption
in structured P2P networks. Now, we select a hypercube
with size2n where2n−1 ≤ N < 2n. When the number
of nodes is less than2n, we might not be able to con-
struct the complete hypercube overlay topology. Thus,
to keep the hypercube well connected, neighbors of the
missing node are connected with each other. As shown
in Fig. 3(b), in a hypercube with24 nodes, node with ID
0100 is missing. Its neighbor0000 is connected to0101
and0110 is connect with1100. Thereby, all the nodes
in the system still havelog2N neighbors and queries can
be routed properly within the network.

Using the greedy approach, the node with the largest
distance to the nearest existing roots is selected as the
next root. As the hamming distance represents a dis-
tance metric, we can easily identify the farthest node
in the system. For example, in a network with sixteen

nodes, the farthest node from peer0000 should be the
peer with complementary node ID1111 because of a
complete bit-inversion at all the positions. Thus, with
one root fixed atr1, the secondary rootr2 can easily be
identified by converting all the bits inr1, so r2 = r̄1.
The distance betweenr1 andr2 is log2N which is also
the diameter of the hypercube. For any node IDid in
the network, letd1 andd2 denote the distance between
id andr1, r2 (r̄1) respectively. Interestingly, the sum of
d1 andd2 always equalslog2N . This means with two
roots located atr1 andr̄1, nodes are able to route to the
nearer one within⌊ log2N

2
⌋ hops. The hypercube is actu-

ally a double rooted tree. In an incomplete hypercube,
less nodes in the system may in turn result in less hops
to reach the destination. Fig.3(a) shows example with
two root nodes in four dimensional sixteen node hyper-
cube. Givenk = 2, the worst case distance in our OPR
framework is⌊ log2N

k
⌋.

Whenk = 4, according to the greedy approach, the
next root should be the node with the maximum distance
to the nearest root in0000,1111. In this case, nodes with
ID 0011, 0101, 1001, 0110, 1010 and1100 are all with
two hamming distance to either0000 or1111. Generally
speaking, any of them are qualified to be the next root.
In our case, we use0011 and1100 which is numerically
nearest to0000 and1111 respectively.

In a scalable P2P network, every node uses the lo-
cal information to route the incoming queries to the des-
tination. In order to reach the destination, queries are
forwarded to one of the neighbors whose IDs are pro-
gressively closer to the destination nodeD.

In OPR, each query is routed to the neighbor that has
the least hamming distance with the destination node.
Each node has a neighbor table (routing table) with
log2N entries. And each neighbor is one hamming dis-
tance away from the node. Withlog2N neighbors, any
node can find a neighbor which is at least one hop nearer
to the destination. Thus, the destination can be reached
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within log2N hops. When nodes are missing in the hy-
percube, they are connected to the nodes which are two
hops away from it. Thus, queries can be routed to the
destination even faster.

When a query cannot find any node in the routing ta-
ble that is nearer to the destination node, it indicates that
the destination node is not available in the system. The
query will instead be forwarded to a node which is nu-
merically closest to the destination node. Eventually, the
query will reach the node which is numerically nearest
to the destination node in the system where the data is
located.

5 Replication Strategy

In the previous section, we discussed where to place
the replica pointers. Naturally, the larger number of
replicas, the better performance we can obtain. How-
ever, more replicas could also introduce more commu-
nication overhead in the system which may degrade
the performance. An optimal replication strategy helps
maximize the network resource utilization and in turn
minimizes the absolute resource demand. In this sec-
tion, we will demonstrate how to achieve such an opti-
mal replication strategy in a hypercube based structured
P2P network.

5.1 Resource Analysis

Both query messages and the system-maintenance
messages consume network resources to an extent. We
term the union of these astotal control messages. In the
replication framework, system-maintenance messages
are used to keep the pointers up-to-date. To best utilize
the limited resources, we propose an optimal replication
strategy with the minimal resource consumption.

In a network withN nodes and replication degreek,
the cost for each query can be calculated by Equation 3,
whereSq denotes the size of the query message.

Costquery = (
⌊log(N − 1)⌋ + 1

2
− logk+1)∗Sq (3)

Our replication algorithm is designed to obtain the
minimum worst-case query search latency for all ob-
jects in the system such that the P2P system could be
employed for latency sensitive applications. We use the
same replication degree for all objects for mathematical
ease.

Overhead analysis: By replicating pointers on mul-
tiple roots, we introduce communication overhead in the
system. When a new object is inserted into the network,
instead of routing to the original rootr1 to publish the

object pointer, we need to route to all thek roots. This
also happens when the object is moved or deleted from
the system. This implies that the communication over-
head to initialize the pointer information increases by
a factor ofk. However, by paying this cost for initial-
ization we benefit significantly during the query-phase.
The cost for publishing and updating multiple pointers
are the same and are calculated via Equation 4 where
Sm denotes the size of the publish/update message.

Costmaintenance = ((⌊log(N − 1)⌋+ 1)+ k− 2) ∗Sm

(4)
The total cost of the system is calculated by Equation

5 whereRq denotes the query arrival rate andRn de-
notes the number of objects inserted or deleted from the
systems per second.

Costtotal = Costquery ∗ Rq + Costmaintenance ∗ Rn

(5)
From these equations, it is clear that the total cost

incurred by queries reduces as the number of replica-
tions increases. To take full advantage of the benefit of
this replication scheme, it is required to find the optimal
replication degree such that the total cost is minimized.
We can rewrite the Equation 5 by substitutingCostquery

andCostmaintenance by Equation 3 and Equation 4 respec-
tively.

Costtotal = {(
⌊log(N − 1)⌋ + 1

2
− logk + 1) ∗ Sq} ∗ Rq+

{((⌊log(N − 1)⌋ + 1) + k − 2) ∗ Sm} ∗ Rn

To get the optimal replication degreek, we differenti-
ate Equation 5 fork. We can computek which satisfies
dCosttotal

dk
= 0 and dCost2

total

dk
> 0. Finally, we obtain the

optimalk requiring minimal communication cost as shown in
Equation 6.

k =
Sq ∗ Rq

ln 2 ∗ Sm ∗ Rn

(6)

The query message is usually of the same size as the pointer
maintenance message. Therefore, Equation 6 can be further
simplified as follows:

k =
Rq

ln 2 ∗ Rn

(7)

From the above equation, we conclude thatthe optimal
replication degree is directly proportional to the query ar-
rival rate and inversely proportional to the system churn
rate. In OPR, we adapt the replication degree dynamically
according to the estimation of the query arrival rate and the
system churn rate. The query arrival rate and the system churn
rate can be estimated using the sampling technique proposed
in [6].
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5.2 Addressing Peer Churn

In a dynamic environment, it is important to address node
churn. When nodes join the network, they try to construct their
routing tables by contacting other nodes in the network. Also,
the new incoming nodes propagate their existence to other
nodes in the network. When nodes leave the network, we need
to make sure that the pointers they store are transferred over to
other nodes in the network to ensure consistent data availabil-
ity. Also the nodes which registered the leaving node in their
neighbor tables need to update their routing tables.

When a node, sayP , leaves the network, it informs its
neighbors about its intention, along with the corresponding re-
placement nodefor updating route entries. Upon receiving the
exit message from nodeP , the neighbors update their routing
entries. The pointers kept on nodeP are pushed to the neigh-
bor which has the ID that is numerically nearest toP .

However, in a dynamic and failure-prone environment,
nodes may just become unreachable due to node and link fail-
ure which partition the network. Many mechanisms have been
proposed to monitor node availability, update routing tables
and find back the lost pointers stored on the failed node. These
methods are complex and time-consuming and before the sys-
tem gets updated, it may result in routing failures and querying
failures for acquiring the lost data (pointers). In other words,
the static resilience of the design is quite important. Here,
we define static resilience as how well routing can continue
to function as nodes fail and other nodes try to establish con-
nections to compensate.

Replication algorithms are known to enhance the perfor-
mance, improve the availability of the data and resist to node
failure [7]. With multiple roots exiting in the system, the point-
ers of the objects are always available in the system unless all
the multiple roots fail simultaneously. A query will be first
routed to the nearest root asking for the pointer. If this root is
unable to respond, it is assumed to be failed. Then the query
will be sent to the nearest root among all other active roots.
This step will be repeated until the pointer is fetched.

6 Experiments On PlanetLab

To verify the efficiency and effectiveness of our replica
placement algorithm, we conduct experiments on PlanetLab
[5], a global overlay network designed by and for the research
community.

Setup: We secure 100 geographically distributed nodes
connected by a diverse collection of links to form a corpus.
For our experiment, we use 16 nodes to form our network
as a hypercube overlay. For each run, we choose 16 nodes
from our corpus, based on CoMoN [2] data which allows us to
rank nodes based on their relative stability and available band-
width and CPU resources. We select the best 16 candidates
from the dataset and implement our hypercube structure atop
it. We inject queries for different objects in this structured
network in order to observe search latencies. Unless other-
wise noted, each object has the same probability to be queried
(Random Workload). Also, each node in the network also has

the same probability to issue a query. The arrival time be-
tween consecutive queries follows a Poisson distribution (i.e.
p(x, λ) = e−λ ∗ (λ)x/(x!)), whereλ is the mean value andx
is a non-negative integer.

The following performance measures are used in the exper-
iments,

• Average Query Latency:The average latency seen by a
query in the network to get the pointer.

• Maximum Query Latency:Among all the queries, the
maximum latency for one successful query.

To highlight the effectiveness of our algorithm, we com-
pare our algorithm with three other replication algorithmsas
follows,

Competing schemes: One intuitive approach is to ran-
domly place the replications and forward the query to the near-
est replica, we term this as RMP(Random Placement). We
also compare our scheme with Beehive where replications are
placed on all nodes that logically precede the root on all query-
ing paths. Besides RMP and Beehive, we also put dupli-
cate pointers on some intermediate nodes, called Intermediate
Pointer Placement (IPP). As a result, a query may encounter an
intermediate node with the requested pointer on its way to the
root. Thus, the average route length for searching the pointer
is cut down, and the workload for the whole system is reduced
as it prevents the query from being forwarded to the rest of the
nodes on the path. This mechanism is proposed in Plaxton’s
paper [20], where all the intermediate nodes between the home
node and root node contain copies of the pointers. Again, the
home node is one which has a copy of the original object and
the root is the node to which the object maps.

Table 1. Latency with Intermediate Pointer Caching

Num of nodes Traffic Intensity(Msg/s) Max(s) Avg(s)
8 10 1 0.14
8 100 2 0.21
8 1000 3 0.24
8 100000 10 0.33
16 10 1 0.26
16 100 2 0.31
16 1000 6 0.33
16 100000 21 0.41

The OPR scheme can be supplemented with intermediate
pointers (IPP) to further boost the performance. However, we
would like to ascertain whether it is more beneficial to store
these pointers on intermediate nodes or replicated root nodes.
Therefore, we fix the number of replications tok and compare
both cases. Letp be the number of nodes on the path from the
home node to the root. Whenp > k, we replicate the pointers
on the nodes which lie on the path to the root and are near it
too. This is because pointers if placed near the root are logi-
cally situated on the higher levels of the tree and may satisfy
queries with higher probability. While in the other situation
wherep <= k, we put thek − p extra duplications on the
neighbors of the root. So the total number of pointer duplica-
tions isk including multiple roots and intermediate pointers.
We summarize the competing schemes below:
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Figure 4. Experimental Results in Planetlab

• Random Plancement(RMP) [23]:Randomly select sev-
eral nodes in the network as roots that store replicas and
each query is forwarded to the nearest replica.

• Intermediate Pointers Placement(IPP) [20]:With one
root, pointers are also kept on the intermediate nodes
which happen to be on the path from the original file lo-
cation (home node) to the root of the tree.

• Beehive [21]:The replicas are instantiated on all nodes
logically preceding the root on all query paths.

To re-iterate, object pointers are stored on paths from root
to the actual location of the object. We measure amount of
time needed for a query to reach the final node which stores
the actual object. In Fig. 1, we depict a typical scenario and
measure time beginning at query insertion point (grey node,
bottom left) to the final object location node (dark node, bot-
tom right). The latency results are presented in table 1. We
also present Fig. 4 which depicts the efficacy of OPR versus
other replication schemes. We find that the object-search la-
tency decreases by nearly 60% by augmenting the number of
roots, as shown in Fig. 4a . Further, in Fig. 4b we observe that
OPR performs significantly better in terms of search latency
compared to RMP, IP and Beehive.

7 Simulation Results

In order to evaluate the performance of our algorithm with
large network sizes, we implement an event-driven simula-
tor to emulate the algorithm behavior on a variety of network
topologies and web workloads. Additionally, the robustness of
our algorithms is evaluated by varying the failure rate of nodes
in the network.

Simulation setup: The experiment al network consists of
4096 nodes conforming to a GT-ITM generated Transit-Stub
(TS) topology [34]. Each node is assigned a unique node ID
randomly when it enters the network. TS models the network
using a two-level hierarchy of routing domains, with transit
domains interconnecting the lower level stub domains. By
default, the latency of intra-transit domain links, stub-transit
links and intra-stub domain links are set to 20ms, 5ms and

2ms respectively [24]. There are 100,000 different objectsdis-
tributed randomly in the network, with each object having a
unique object ID in an identifier space of2128.

In the following subsections, we study the performance of
our algorithm against various network and workload configu-
rations. Effects of varying the number of duplications, work-
loads and node failure rate are observed. The effectivenessof
our algorithm in improving the system’s load balance caracter-
istics is also demonstrated.

7.1 Performance of Replication Place-
ment

Given the number of duplications, our algorithm tries to
place the duplicated roots intelligently to achieve minimum
object search latency. Intuitively, as the number of replicas in-
crease, it is more likely that the queries can get to the pointers
with less number of hops since more information is available
in the network. This trend is clearly captured in Fig. 5(a) and
5(b) which depicts the average case latency and worst case la-
tency as a function of the number of roots when there are no
intermediate pointers in the network. When there is only one
pointer in the system, the average latency is 6 and the worst
case is 12 in a 4096 node network. With increase in the num-
ber of replications, the object search latency in both average
case and worst case decrease moderately.

We now compare our results with the intermediate pointer
(IP) case. Note that the number of pointers is kept same as
the number of roots to maintain a level playing field. Among
all the four schemes shown in Fig. 5(a) and 5(b), our duplica-
tion placement algorithms OPR outperform the random roots
selection scheme and the intermediate pointers scheme consis-
tently. This is because our placement strategy actively situates
the replica roots intelligently, based on the overlay topology.
With the same number of replications, approximately 30% im-
provement can be observed via OPR compared with the IPP
scheme. The random roots selection strategy performs better
than the intermediate pointer scheme.

The same trend can be observed in Fig. 6(a) and Fig. 6(b)
with intermediate pointers. In this case the pointers existin all
the intermediate nodes. It may be observed that the average
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Figure 5. Perf. with Varying Number of Replications without Intermediate Pointers
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Figure 6. Perf. with Varying Number of Replications with Int ermediate Pointers

latency is reduced from6 (Fig. 5(a)) to5.3 when there is one
root and pointers at all intermediate nodes [20]. Adding mul-
tiple roots through RMP, OPR techniques reduces the latency
further.

7.2 Churn Scenario

In order to examine the impact of churn rate on the per-
formance of our algorithm, we conduct our simulation under
churn. According to a study of churn model [32], we set Pois-
son arrivals and pareto stay time for nodes in our simulator.By
default, the Poisson arrival rate is at10 joins per second, and
the pareto stay time with a minimum duration of90 seconds
and a mean of300 second with the pareto parameterα = 10

7
.

Fault tolerance mechanism to ensure the consistency of the
routing table and the object availability is not consideredin
this experiment. This is done so that the benefit of replicated

roots can be observed in isolation. The number of nodes in the
network is kept roughly constant by matching the node arrival
and failure rates. Every node in the system has the same prob-
ability of failing. Queries are considered to be unsuccessful
when either all the roots in the system have failed or the paths
to the roots are broken.

Fig. 7 depicts the success rate of the queries with varying
churn rate in OPR when there are2 or 4 roots. With the same
failed nodes, the success rate increases as the number of roots
increases. Fig. 7 shows that the reliability of OPR with roots
4 and2 is much better than that with a single root.

Overhead evaluation: In Fig. 8 we depict the total net-
work bandwidth consumption with varying number of replicas.
Here, the bandwidth cost consumed by the query messages and
update messages is measured by the total number of hops seen
by all the messages per second. As shown in Fig. 8, starting
from a single replication, the total cost decreases as the number
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of replications increases. This trend ends when the number of
replicas reaches8. Beyond this point, the total cost increases
with increasing number of replicas. Clearly, the curve closely
matches the analytical results which is derived from theoretical
results, for the ease of comparison.

7.3 Load Balance Analysis

In this subsection, we evaluate the impact of our replication
algorithm on load-balance characteristics. Load balance is de-
fined as the variation in the number of queries satisfied per
node and the number of queries forwarded per node. When
the popularity of each object remains the same in the system
and objects are uniformly mapped to nodes, each peer receives
roughly the same number of queries. Hence, the hash function
maps the objects to the roots uniformly. However, when the
number of queries for each object follows a Zipf distribution,
the amount of queries sent to each node can vary significantly.

For our experiments, we also use the ZipfII workload dis-
tribution, and vary the number of roots in the network. Fig-
ure 9(a) plots the mean and the 1st and 99th percentiles of
the number of queries satisfied by each node for OPR scheme.
The average number queries per node remains the same, but
the numbers exhibit large variations. As the number of roots
increase, the gap between the maximum and the minimum di-
minishes significantly. The same trend can also be observed
in Fig. 9(b) which depicts the number of queries forwarded

(instead of satisfied) by each node.
With Zipf distribution, some roots may receive thousands

of queries while others only get a few queries. When several
roots exist for one object, the queries for that object are actu-
ally partitioned and allocated to different roots. With such a
design, the queries can be evenly distributed among the peers
as the number of replicated roots increases.

8 Conclusion

Through our research we develop an on-line topology-
aware algorithm, OPR to intelligently replicate roots in struc-
tured P2P networks based on a greedy, 2-approximation of the
k-center problem. We show using extensive simulations and
implementation on PlanetLab, that our methods are superior
to various other competing options, by consistently perform-
ing nearly 30% better in terms of average latency and around
40% in terms of maximum query latency than IP and random
schemes. We also present detailed analysis for the costs asso-
ciated with updating pointer information and spawning mul-
tiple replicas. Moreover, our mechanism allows replication
degree, a tunable parameter, to dynamically control the repli-
cation mechanism in order to best adapt to rapid changes in
network conditions.
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